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As applied to the solution of the heat-conduction problem for a two-layer structure, the Fourier method is
used jointly with the orthogonal Bubnov–Galerkin method. An important feature is the introduction of addi-
tional boundary conditions, the need for which is explained by the appearance of an additional parameter µ
after the separation of the variables in the input differential equation. The additional boundary conditions are
derived from the basic differential equation by differentiating it at the boundary points.

The present paper describes a problem-definition procedure that does not require determination of the func-
tions exactly satisfying the equations obtained after separation of the variables in the input differential equation. The
basic idea of the proposed approach is as follows. The solution for the Sturm–Liouville equation obtained after the
separation of the variables is constructed as a series containing coordinate functions (algebraic or trigonometric) with
unknown coefficients determined from the basic and additional boundary conditions by solving the system of algebraic
linear equations. To find the eigenvalues, an integral of the weighted residual of the (Sturm–Liouville) differential
equation is computed. From this, to determine the eigenvalues, an algebraic polynomial whose degree depends on the
number of terms of the sequence of the solution used is obtained [1, 2].

Consider the application of this method to the solution of the heat-conduction problem for a two-layer infi-
nitely stretched plate under boundary conditions of the third kind in the following mathematical formulation:

∂ti (η, τ)

∂τ
 = ai 

∂2
ti (η, τ)

∂η2
     (ηi−1 ≤ η < ηi ,   i = 1, 2 ,   η0 = 0 ,   η2 = δ) , (1)

ti (η, 0) = t0i , (2)

∂ti (0, τ) ⁄ ∂η = 0 , (3)

t1 (η1, τ) = t2 (η1, τ) , (4)

λ1∂t1 (η1, τ) ⁄ ∂η = λ2∂t2 (η1, τ) ⁄ ∂η , (5)

λ2∂t2 (η2, τ) ⁄ ∂η = α [t (η2, τ) − tm] . (6)

We introduce the following dimensionless variables and parameters: x = η ⁄ δ; Fo = aτ ⁄ δ2; Bi = αδ ⁄ λ; Θi(x,
Fo) = (ti − tm)/(t0i − tm); a is the least of the thermal diffusivities ai (i = 1, 2).

In view of the notations used, problem (1)–(6) takes on the form
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∂Θi (x, Fo)

∂Fo
 = 

ai

a
 
∂2Θi (x, Fo)

∂x
2    (Fo > 0 ,   xi−1 ≤ x < xi ,   i = 1, 2 ,   x0 = 0 ,   x2 = 1) , (7)

Θi (x, 0) = 1 , (8)

∂Θi (0, Fo) ⁄ ∂x = 0 , (9)

Θ1 (x1, Fo) = Θ2 (x1, Fo) , (10)

λ1∂Θ1 (x1, Fo) ⁄ ∂x = λ2∂Θ2 (x1, Fo) ⁄ ∂x , (11)

∂Θ2 (1, Fo) ⁄ ∂x + Bi Θ2 (1, Fo) = 0 . (12)

In accordance with the method of separation of variables, the solution of problem (7)–(12) is found in the form

Θi (x, Fo) = ϕi (Fo) Ψi (x) . (13)

Substituting (13) into (7), we find the following two ordinary differential equations:

ϕi
I
 (Fo) + µϕi (Fo) = 0 , (14)

ai
a

 Ψi
II

 (x) + µΨi (x) = 0 ,
(15)

here µ = ν2.
The solution of Eq. (14) is known:

ϕni (Fo) = An exp (− µn Fo) , (16)

where An denotes the unknown coefficients.
For Eq. (15), the following boundary conditions and conjugation conditions are used:

Ψ1
I
 (0) = 0 ; (17)

Ψ1 (x1) = Ψ2 (x1) ; (18)

λ1Ψ1
I
 (x1) = λ2Ψ2

I
 (x1) ; (19)

Ψ2
I
 (1) + Bi Ψ2 (1) = 0 . (20)

The solution of Eq. (15) is taken in the form
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Ψni (x) = ∑ 

k=0

n

 CkiNki (x)   (i = 1, 2) , (21)

where Cki stands for the unknown coefficients; Nki(x) denotes the coordinate functions.
As the coordinate functions for the first and second layers, we use the functions

Nk1 (x) = x
k
   (k = 0, 2, 4, 6, ...) , (22)

Nk2 (x) = x
k
   (k = 0, 1, 3, 5, ...) . (23)

The unknown coefficients Cki (k = 0, n
___

, i = 1, 2) are determined from the boundary conditions (17)–(20).
Since the number of coefficients Cki can be arbitrarily large, and the boundary conditions and the conjugation condi-
tions are only four, it is necessary to introduce additional boundary conditions. They can be obtained from Eq. (15)
and its derivatives of different orders at the points x = 0 and x = 1. As the first additional conditions, we take

Ψ1 (0) = const = 1 , (24)

which follows from the boundary condition (17). The other additional boundary conditions (at the point x = 0) will be
of the form

Ψ1
II

 (0) = − µa2
 ⁄ a1 , (25)

Ψ1
III

 (0) = 0 , (26)

Ψ1
IV

 (0) = µ2
a2

 ⁄ a1 , (27)

Ψ1
V

 (0) = 0 , (28)

Ψ1
VI

 (0) = − µ3
a2

 ⁄ a1 , (29)

Ψ1
VII

 (0) = 0 , (30)

Ψ1
VIII

 (0) = µ4
a2

 ⁄ a1 , (31)

Ψ1
IX

 (0) = 0 , (32)

Ψ1
X

 (0) = − µ5
a2

 ⁄ a1 , ... . (33)

To obtain an additional boundary condition at the point x = 1, we differentiate Eq. (12) with respect to Fo:

∂2Θ2 (1, Fo)
∂x∂Fo

 + Bi 
∂Θ2 (1, Fo)

∂Fo
 = 0 .

(34)
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Differentiate Eq. (7) with respect to x and write the obtained relation for the point x = 1:

∂2Θ2 (1, Fo)

∂x∂Fo
 = 

ai

a
 
∂3Θ2 (1, Fo)

∂x
3  .

(35)

Rewrite relation (34) in view of (7):

∂2Θ2 (1, Fo)

∂x∂Fo
 = − Bi 

ai

a
 
∂2Θ (1, Fo)

∂x
2  . (36)

Comparing (35) and (36), we obtain

∂3Θ2 (1, Fo)

∂x
3

 + Bi 
∂2Θ2 (1, Fo)

∂x
2

 = 0 . (37)

From (37) we get the following additional boundary condition:

Ψ2
III

 (1) + Bi Ψ2
II

 (1) = 0 . (38)

To find the coefficients Cki, substitute (21) into (17)–(20), (24)–(27), and (38). In so doing, according to (21),
for the first layer we restrict ourselves to five terms of the series and for the second layer — to four terms. As a re-
sult, we will have nine algebraic linear equations (according to the number of basic and additional boundary condi-
tions) with nine unknown Ck1 (k = 0, 4

___
) and Ck2 (k = 0, 3

___
).

Analysis of this system of equations permits the conclusion that only one unknown enters into each of the
five equations containing the unknown Ck1 (the equations are separated), which can easily be found:

C01 = 1 ;   C11 = 0 ;   C21 = − 
1
2

 µ 
a2

a1
 ;   C31 = 0 ;   C41 = 

1
24

 µ2
 
a2

a1
 .

To determine the coefficients Ck2 (k = 0, 3
___

), it is necessary to solve four algebraic linear equations composed
of the boundary conditions (18)–(20), (38).

Find the solution of problem (7)–(12) for the following input data [3]: η1 = 0.002 m, η2 = 0.006 m, a1 =
12.5⋅10−6 m2/sec, a2 = 6⋅10−6 m2/sec, λ1 = 45.24 W/(m⋅K), λ2 = 16.24 W/(m⋅K), Bi = 2, and a = a2 = 6⋅10−6 m2/sec.

Once the coefficients Cki have been determined, the integral of the weighted residual of Eq. (15) is written as

 ∫ 

0

x1 






a1

a
  ∑ 

k=0

4

 Ck1 
∂2

Nk1

∂x
2

 + µ  ∑ 

k=0

4

 Ck1Nk1







 dx + ∫ 

x1

1 






a2

a
  ∑ 

k=0

3

 Ck2 
∂2

Nk2

∂x
2

 + µ  ∑ 

k=0

3

 Ck2Nk2







 dx = 0 . (39)

Determining the integrals in relation (39), with respect to the parameter µ we obtain the algebraic polynomial

− 8.02234⋅10
−2µ2

 + 1.1942⋅10
−3µ3

 − 1.21949 + 1.25019µ = 0 . (40)

Its roots are

µ1 = 1.044343 ,   µ2 = 22.316056 ,   µ3 = 43.816549 . (41)

The eigenfunctions corresponding to each eigenvalue are found from (21). Relation (13), in view of (16) and (21), for
each eigenvalue will be of the form

Θki (x, Fo) = AkΨki (x, µk) exp (− µk Fo)     (k = 1, 3
___

 ,   i = 1, 2) . (42)
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Each particular solution of the form (42) exactly satisfies the boundary conditions (9), (12) and the conjuga-
tion conditions (10), (11) and approximately (depending on the number of approximations — the number of eigenval-
ues found from polynomial (40)) satisfies Eq. (7). However, not a single one of these particular solutions, including
their sum

Θi (x, Fo) = ∑ 

k=1

3

 AkΨki (x, µk) exp (− µk Fo)     (i = 1, 2) , (43)

satisfies the initial condition (8). For Eq. (43) to satisfy the initial condition, we set up its residual and require that
the residual be orthogonal to each eigenfunction Ψki(x, µ), i.e.,

 ∫ 

0

x1 





 ∑ 

k=1

3

 AkΨk1 (x, µk) − 1






 Ψj1 (x, µj) dx + ∫ 

x1

1 





 ∑ 

k=1

3

 AkΨk2 (x, µk) − 1






 Ψj2 (x, µj) dx = 0     (j = 1, 2, 3) . (44)

Determining the integrals in (44), with respect to the unknown coefficients Ak (k = 1, 2, 3) we obtain a sys-
tem of three algebraic linear equations. From its solution we find

A1 = 1.119281 ,   A2 = − 0.500714 ,   A3 = 0.404640 .

Having determined Ak, we find the solution of problem (7)–(12) in closed form from (43).
The results of the calculations by formula (43), as compared to the data of [3], and the results of the calcu-

lations by the finite-difference method (marching method) and the method of [4] are given in Fig. 1.
Analysis of the results obtained permits the conclusion on a fair agreement between the dimensionless tem-

peratures determined by all of the above methods.
For the number of layers m > 2, the coordinate functions of the third layer can be taken to be the same as the

functions of the first layer, i.e., Nk3 = xk (k = 0, 2, 4, 6, ...), those of the fourth layer — the same as the functions
of the second layer, and so on. It should be noted that the conditions of linear independence of the coordinate func-
tions between individual layers will be satisfied.

Fig. 1. Temperature distribution in the two-layer plate: 1) results of the calcu-
lations obtained by the marching method; 2) data of [3]; 3) results of the cal-
culation obtained by formula (43) (third approximation); 4) results of the
calculation obtained by formula of (5.58) [4] (sixth approximation with coordi-
nate functions (5.20), (5.21)).
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NOTATION

ai, thermal diffusivity; t0i, initial temperature; tm, medium temperature; ti, temperature of the ith layer; α,
heat-transfer coefficient; δ = δ1 + δ2, thickness of the two-layer system; δ1, δ2, layer thickness; η, coordinate; λi, heat-
conductivity coefficient of the ith layer; τ, time.
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